Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements


[Inside front cover]SERS‐Active‐Charged Microgels for Size‐ and Charge‐Selective Molecular Analysis of Complex Biological Samples

Title: SERSActiveCharged Microgels for Size and ChargeSelective Molecular Analysis of Complex Biological Samples

Author: Dong Jae Kim, SungGyu Park, DongHo Kim,* and ShinHyun Kim*

Journal: Small, 2018, 14, 1802520

Abstract: Surfaceenhanced Raman scattering (SERS) provides a dramatic increase of Raman intensity for molecules adsorbed on nanogaprich metal nanostructures, serving as a promising tool for molecular analysis. However, surface contamination caused by protein adsorption and low surface concentration of small target molecules reduce the sensitivity, which severely restricts the use of SERS in many applications. Here, charged microgels containing agglomerates of gold nanoparticles (Au NPs) are designed using dropletbased microfluidics to provide a reliable SERS substrate with molecular selectivity and high sensitivity. The limiting mesh size of hydrogel enables the autonomous exclusion of large proteins and the charged matrix concentrates oppositely charged small molecules through electrostatic attraction. As nanogaps among Au NPs in the agglomerates enhance Raman intensity, Raman spectrum of the adsorbed molecules is selectively measured with high sensitivity in the absence of interruption from adhesive proteins. Therefore, the SERSactivecharged microgels can be used for direct analysis of pristine biological samples without the pretreatment steps of separation and concentration, which are commonly a prerequisite for Raman analysis. For the purpose of demonstration, a direct detection of fipronil sulfone with partial negative charges, a metabolite of toxic insecticide, dissolved in eggs using the positively charged microgels without any pretreatment of the samples, is shown. 




첨부파일 다운로드




  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
Rational Design of Escherichia coli for l-Isoleucine Production Jin Hwan Park , Jae Eun Oh , Kwang Ho Lee , Ji Young Kim , and Sang Yup Lee   ABSTRACT   Metabolic engineering of Escherichia coli was performed to construct a 100% rationally engineered strain capable of overproducing l-isoleucine, an important branched-chain amino acid. The thrABC (encoding l-threon...
An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing Jong Young Choi ,  Yong Tae Kim ,  Ju-Young Byun ,  Jinwoo Ahn ,  Soyi Chung ,  Dae-Gab Gweon ,  Min-Gon Kim and Tae Seok Seo ABSTRACT An integrated allele-specific polymerase chain reaction (AS PCR) and microarray chip h...
Elaborate Design Strategies Toward Novel Microcarriers for Controlled Encapsulation and Release Tae Soup Shim, Shin-Hyun Kim,Seung-Man Yang Article first published online: 7 NOV 2012 DOI: 10.1002/ppsc.201200044 Abstract Microencapsulation and the controlled release of bioactive agents have long been investigated and exploited to both improve the fundamental unders...
Silicon Nanowires: Hierarchically Ordered Arrays of Noncircular Silicon Nanowires Featured by Holographic Lithography Toward a High-Fidelity Sensing Platform (Adv. Funct. Mater. 20/2012) (page 4399) Hwan Chul Jeon, Chul-Joon Heo, Su Yeon Lee and Seung-Man Yang Article first published online: 12 OCT 2012 | DOI: 10.1002/adfm.201290122 [Abstract] Seung-Man Yang and co-workers rep...
Byung Hyun Park ,  Jae Hwan Jung ,  Hainan Zhang ,  Nae Yoon Lee and Tae Seok Seo Lab Chip, 2012,12, 3875-3881 Received 01 May 2012, Accepted 13 Jun 2012First published on the web 15 Jun 2012 This article is part ofDOI: 10.1039/C2LC40487G the collection: Lab on a Chip Emerging Investigators 2012 Abstract In this work, we demonstrate a novel rotary microsyst...