Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[Front Cover]Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline


Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline Ki Soo Park, Seung Soo Oh, H. Tom Soh and Hyun Gyu Park

[ABSTRACT]

A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocket for recognition of theophylline and a template for the preparation of fluorescent silver nanoclusters. The strategy relies on theophylline-controlled formation of fluorescent silver nanoclusters from abasic site-incorporated duplex DNA. When theophylline is not present, silver ions interact with the cytosine groups opposite to the abasic site in duplex DNA. This interaction leads to efficient formation of intensely red fluorescent silver nanoclusters. In contrast, when theophylline is bound at the abasic site through pseudo base-pairing with appropriately positioned cytosines, silver ion binding to the cytosine nucleobase is prevented. Consequently, fluorescent silver nanoclusters are not formed causing a significant reduction of the fluorescence signal. By employing this new sensor, theophylline can be highly selectively detected at a concentration as low as 1.8 μM. Finally, the diagnostic capability and practical application of this sensor were demonstrated by its use in detecting theophylline in human blood serum.


첨부파일 다운로드

등록자배성순

등록일2014-09-26

조회수6,217

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
사진제목
Title: Polyketide bio-derivatization using the promiscuous acyltransferase KirCII Author: Musiol-Kroll, E.M., Zubeil, F., Schafhauser, T., Hartner, T., Kulik, A., McArthur, J., Koryakina, I., Wohlleben, W., Grond, S., Williams, G.J., Lee, S.Y., and Weber, T. Journal: ACS Synth. Biol., 2017, 6 (3), pp 421–427   Abstract: During polyketide bios...
Title: Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme Author: Kim, Y-J., Choi, S.Y., Kim, J.E., Jin, K.S., Lee, S.Y., Kim, K-J. Journal: Biotechnol. J., 12(1):  1-12 (2017. 1) Abstract: Polyhydroxyalkanoates (PHAs) are natural...
Title: Crystal structure of Ralstonia eutrophapolyhydroxyalkanoate synthase C-terminal domain and reaction mechanismsAuthor: Kim, J.E., Kim, Y-J., Choi, S.Y., Lee, S.Y.,Kim, K-J.Journal: Biotechnol. J., 12(1):  1-12(2017. 1)Abstract:Polyhydroxyalkanoates(PHAs) are natural polyesters synthesized by numerous microorganisms as energyand reducing power storage materials, and h...
Title: Biosynthesis of poly(2-hydroxyisovalerate-co-lactate) by metabolically engineered Escherichia coli   Author: Yang, J.E., Kim, J.W., Oh, Y.H., Choi, S.Y., Lee, H., Park, A.-R., Shin, J., Park, S.J., and Lee, S.Y.  Journal: Biotechnol. J. , 11(12): 1572-1585 (2016. 12)  Abstract: Polyhydroxyalkanoates (PHAs) containing 2-hydroxy...
Title: Fluorescent Block Copolymer-MoS2Nanocomposites for Real-Time Photothermal Heating and Imaging Author: Chan Ho Park, Hongseok Yun, Hyunseung Yang, JunhyukLee, and Bumjoon J. Kim* Journal: Advanced Functional Materials, 2017, 27, 1604403 Abstract:Novel self-monitoring photothermal (PT) agents are developed using optothermally responsive block copolymer-MoS2 ...