Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[cover picture] Design of Cyanovinylene-Containing Polymer Acceptors with Large Dipole Moment Change for Efficient Charge Generation in High-Performance All-Polymer Solar Cells

Title: Design of Cyanovinylene-Containing Polymer Acceptors with Large Dipole Moment Change forEfficient Charge Generation in High-Performance All-Polymer Solar Cells 

 

Author: Han-Hee Cho, SeonhaKim, Taesu Kim, Vijaya Gopalan Sree, Sung-Ho Jin, Felix Sunjoo Kim, and BumjoonJ. Kim* 

 

Journal: Advanced EnergyMaterials 2017, 8 (3), 1701436 

 

Abstract: Designing polymersthat facilitate exciton dissociation and charge transport is critical for theproduction of highly efficient all-polymer solar cells (all-PSCs). Here, thedevelopment of a new class of high-performance naphthalenediimide (NDI)-basedpolymers with large dipole moment change (Δµge) anddelocalized lowest unoccupied molecular orbital (LUMO) as electron acceptorsfor all-PSCs is reported. A series of NDI-based copolymers incorporatingelectron-withdrawing cyanovinylene groups into the backbone (PNDITCVT-R) isdesigned and synthesized with 2-hexyldecyl (R = HD) and 2-octyldodecyl (R = OD)side chains. Density functional theory calculations reveal an enhancement in Δµge and delocalization of the LUMO upon the incorporation of cyanovinylenegroups. All-PSCs fabricated from these new NDI-based polymer acceptors exhibitoutstanding power conversion efficiencies (7.4%) and high fill factors (65%),which is attributed to efficient exciton dissociation, well-balanced chargetransport, and suppressed monomolecular recombination. Morphological studies bygrazing X-ray scattering and resonant soft X-ray scattering measurements showthe blend films containing polymer donor and PNDITCVT-R acceptors to exhibitfavorable face-on orientation and well-mixed morphology with small domainspacing (3040 nm). 

 

첨부파일 다운로드

등록자관리자

등록일2018-02-01

조회수4,837

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
사진제목
Rational Design of Escherichia coli for l-Isoleucine Production Jin Hwan Park , Jae Eun Oh , Kwang Ho Lee , Ji Young Kim , and Sang Yup Lee   ABSTRACT   Metabolic engineering of Escherichia coli was performed to construct a 100% rationally engineered strain capable of overproducing l-isoleucine, an important branched-chain amino acid. The thrABC (encoding l-threon...
An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing Jong Young Choi ,  Yong Tae Kim ,  Ju-Young Byun ,  Jinwoo Ahn ,  Soyi Chung ,  Dae-Gab Gweon ,  Min-Gon Kim and Tae Seok Seo ABSTRACT An integrated allele-specific polymerase chain reaction (AS PCR) and microarray chip h...
Elaborate Design Strategies Toward Novel Microcarriers for Controlled Encapsulation and Release Tae Soup Shim, Shin-Hyun Kim,Seung-Man Yang Article first published online: 7 NOV 2012 DOI: 10.1002/ppsc.201200044 Abstract Microencapsulation and the controlled release of bioactive agents have long been investigated and exploited to both improve the fundamental unders...
Silicon Nanowires: Hierarchically Ordered Arrays of Noncircular Silicon Nanowires Featured by Holographic Lithography Toward a High-Fidelity Sensing Platform (Adv. Funct. Mater. 20/2012) (page 4399) Hwan Chul Jeon, Chul-Joon Heo, Su Yeon Lee and Seung-Man Yang Article first published online: 12 OCT 2012 | DOI: 10.1002/adfm.201290122 [Abstract] Seung-Man Yang and co-workers rep...
Byung Hyun Park ,  Jae Hwan Jung ,  Hainan Zhang ,  Nae Yoon Lee and Tae Seok Seo Lab Chip, 2012,12, 3875-3881 Received 01 May 2012, Accepted 13 Jun 2012First published on the web 15 Jun 2012 This article is part ofDOI: 10.1039/C2LC40487G the collection: Lab on a Chip Emerging Investigators 2012 Abstract In this work, we demonstrate a novel rotary microsyst...