Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[COVER PAGE] Investigation of the signaling mechanism and verification of the performance of an electrochemical real-time PCR system based on the interaction of methylene blue with DNA

Byoung Yeon Won, Sujeong Shin, Songyi Baek, Ye Lim Jung, Taihua Li, Sung Chul Shin, Dae-Yeon Cho, Sang Bok Lee and Hyun Gyu Park
Analyst, 2011, 136, 1573-1579
DOI: 10.1039/C0AN00695E
Received 07 Sep 2010, Accepted 21 Jan 2011
First published on the web 14 Feb 2011

http://pubs.rsc.org/en/Content/ArticleLanding/2011/AN/c0an00695e


Abstract

The operation of an electrochemical real-time PCR system, based on intercalative binding of methylene blue (MB) with dsDNA, has been demonstrated. PCR was performed on a fabricated electrode-patterned glass chip containing MB while recording the cathodic current peak by measuring the square wave voltammogram (SWV). The current peak signal was found to decrease with an increase in the PCR cycle number. This phenomenon was found to be mainly a consequence of the lower apparent diffusion rate of the MB-DNA complex (Db = 6.82 × 10−6 cm2 s−1 with 612 bp dsDNA) as compared to that of free MB (Df = 5.06 × 10−5 cm2 s−1). Utilizing this signal changing mechanism, we successfully demonstrated the feasibility of an electrochemical real-time PCR system by accurately quantifying initial copy numbers of Chlamydia trachomatis DNA templates on a direct electrode chip. A standard calibration plot of the threshold cycle (Ct) value versus the log of the input template quantity demonstrated reliable linearity and a good PCR efficiency (106%) that is comparable to that of a conventional TaqMan probe-based real time PCR. Finally, the system developed in this effort can be employed as a key technology for the achievement of point-of-care genetic diagnosis based on the electrochemical real-time PCR



 


0

추천하기

0

반대하기

첨부파일 다운로드

등록자관리자

등록일2011-08-25

조회수7,086

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
스팸방지코드 :
사진제목
Seungwoo Lee, Jonghwa Shin, Hong Suk Kang, Yong-Hee Lee, Jung-Ki Park* Highlighted as a “Frontispiece” of Advanced Materials, 23(29), 3244-3250 (2011) Article first published online: 3 JUN 2011 DOI: 10.1002/adma.201100662  http://onlinelibrary.wiley.com/doi/10.1002/adma.201100662/abstract Abstract Directional photofluidization lithography enables deterministic large-area na...
Seungwoo Lee, Hong Suk Kang, Jung-Ki Park*Highlighted as a “Frontispiece” of Advanced Functional Materials, 21(10), 1770-1778 (2011) Article first published online: 15 MAR 2011 DOI: 10.1002/adfm.201001927 http://onlinelibrary.wiley.com/doi/10.1002/adfm.201001927/abstract Abstract A major challenge in nanolithography is to overcome the resolution limit of conventional patterni...
Shin-Hyun Kim, Hyerim Hwang, Che Ho Lim, Jae Won Shim, Seung-Man Yang Article first published online: 1 MAR 2011 DOI: 10.1002/adfm.201002316 http://onlinelibrary.wiley.com/doi/10.1002/adfm.201002316/abstract Abstract Advances in microfluidic emulsification have enabled the creation of multiphase emulsion drops, which have emerged as promising templates for producing functional micro...
Byoung Yeon Won, Sujeong Shin, Songyi Baek, Ye Lim Jung, Taihua Li, Sung Chul Shin, Dae-Yeon Cho, Sang Bok Lee and Hyun Gyu ParkAnalyst, 2011, 136, 1573-1579DOI: 10.1039/C0AN00695E Received 07 Sep 2010, Accepted 21 Jan 2011First published on the web 14 Feb 2011http://pubs.rsc.org/en/Content/ArticleLanding/2011/AN/c0an00695e Abstract The operation of an electrochemical real-time PCR syste...
Min-Ah Woo†, Moon Il Kim†, Byung Jo Yu‡, Daeyeon Cho§, Nag-Jong Kim†, June Hyoung Cho‡, Byung-Ok Choi*, Ho Nam Chang†, and Hyun Gyu Park*† † Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea‡ MD Science Inc., 258-1 Munji-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea http://pubs...