Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[Front Cover] An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing

An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing

Jong Young Choi Yong Tae Kim Ju-Young Byun Jinwoo Ahn Soyi Chung Dae-Gab Gweon Min-Gon Kim and Tae Seok Seo

ABSTRACT

An integrated allele-specific polymerase chain reaction (AS PCR) and microarray chip has been developed for multiplex single nucleotide polymorphism (SNP) typing on a portable genetic analyzer instrumentation. We applied the integrated PCR-microarray system for on-site Hanwoo (Korean indigenous beef cattle) identification. Eleven sets of primers were designed, among which ten sets of primers targeted ten SNP loci to discriminate Hanwoo from the imported beef cattle and one primer set was used as a positive PCR control. The AS PCR for multiplex SNP typing was conducted on a glass-based microchip consisting of four layers: a microchannel plate for microfluidic control, a Pt-electrode plate for a resistance temperature detector (RTD), a poly(dimethylsiloxane) (PDMS) membrane and a manifold glass for micropump and microvalve function. The resultant AS PCR products were mixed with a hybridization buffer in a micromixer channel through the micropumping operation, and then the microarray assay was performed in the downstream process. Eleven duplicate probes were spotted in a glass slide, which was connected at the end of the micromixer channel unit. When the mixed solution was injected into the disposable microarray chip, pneumatically actuated micropumping was executed to speed up the hybridization process by inducing the convective flow. The fluorescence signals on each spot were monitored by a miniaturized fluorescence scanner, and the Hanwoo was verified by detecting the number of fluorescent spots with three or fewer among eleven. An integrated portable PCR-microarray genetic analysis microsystem was first demonstrated for rapid, accurate, and on-site multiplex SNP typing to differentiate animal species.  


첨부파일 다운로드

등록자배성순

등록일2012-11-29

조회수9,166

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
사진제목
Rational Design of Escherichia coli for l-Isoleucine Production Jin Hwan Park , Jae Eun Oh , Kwang Ho Lee , Ji Young Kim , and Sang Yup Lee   ABSTRACT   Metabolic engineering of Escherichia coli was performed to construct a 100% rationally engineered strain capable of overproducing l-isoleucine, an important branched-chain amino acid. The thrABC (encoding l-threon...
An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing Jong Young Choi ,  Yong Tae Kim ,  Ju-Young Byun ,  Jinwoo Ahn ,  Soyi Chung ,  Dae-Gab Gweon ,  Min-Gon Kim and Tae Seok Seo ABSTRACT An integrated allele-specific polymerase chain reaction (AS PCR) and microarray chip h...
Elaborate Design Strategies Toward Novel Microcarriers for Controlled Encapsulation and Release Tae Soup Shim, Shin-Hyun Kim,Seung-Man Yang Article first published online: 7 NOV 2012 DOI: 10.1002/ppsc.201200044 Abstract Microencapsulation and the controlled release of bioactive agents have long been investigated and exploited to both improve the fundamental unders...
Silicon Nanowires: Hierarchically Ordered Arrays of Noncircular Silicon Nanowires Featured by Holographic Lithography Toward a High-Fidelity Sensing Platform (Adv. Funct. Mater. 20/2012) (page 4399) Hwan Chul Jeon, Chul-Joon Heo, Su Yeon Lee and Seung-Man Yang Article first published online: 12 OCT 2012 | DOI: 10.1002/adfm.201290122 [Abstract] Seung-Man Yang and co-workers rep...
Byung Hyun Park ,  Jae Hwan Jung ,  Hainan Zhang ,  Nae Yoon Lee and Tae Seok Seo Lab Chip, 2012,12, 3875-3881 Received 01 May 2012, Accepted 13 Jun 2012First published on the web 15 Jun 2012 This article is part ofDOI: 10.1039/C2LC40487G the collection: Lab on a Chip Emerging Investigators 2012 Abstract In this work, we demonstrate a novel rotary microsyst...