Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[Frontispiece] An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte

Title: An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte
Author: Ming Liang Jin, Sangsik Park, Jong-Seon Kim, Sung Hyun Kwon, Shuye Zhang, Min Seok Yoo, Sungwoo Jang, Hyeong-Jun Koh, Soo-Yeon Cho, So Young Kim, Chi Won Ahn, Kilwon Cho, Seung Geol Lee, Do Hwan Kim,* and Hee-Tae Jung*
Journal: Advanced Materials, 2018, Vol.30, 1706851
Abstract: Ultrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices. The ICS displays highly sensitive and stable sensing of representative VOCs (including toluene, hexane, propanal, ethanol, and acetone) that are found in the exhaled breath of lung cancer patients. In particular, the sensor is found to be fully operational even after being subjected to long‐term storage or harsh environmental conditions (relative humidity of 85% or temperature of 100 °C) or severe mechanical deformation (bending to a radius of curvature of 1 mm, or stretching strain of 100%), which can be an effective method to realize a human‐adaptive and skin‐attachable biosensor platform for daily use and early diagnosis.


0

추천하기

0

반대하기

첨부파일 다운로드

등록자관리자

등록일2018-05-18

조회수2,270

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
스팸방지코드 :
사진제목
Title:  [Inside Front Cover] An Ultrasensitive, Visco-Poroelastic Artificial Mechanotransducer Skin Inspired by Piezo2 Protein in Mammalian Merkel Cells  Author: Ming Liang Jin†, Sangsik Park†, Younghoon Lee, Ji Hye Lee, Junho Chung, Joo Sung Kim, Jong-Seon Kim, So Young Kim, Eunsong Jee, Dae Woo Kim, Jae Woo Chung,Seung Geol Lee, Dukhyun Choi, Hee-Tae Jung* ...
Title:  A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA-inorganic hybrid nanoflowers   Author: Ki Soo Park, Bhagwan S Batule, Minsoo Chung, Kyoung Suk Kang, Tae Jung Park, Moon Il Kim and Hyun Gyu Park*   Journal: Journal of Material Chemistry B, 2017, 5, 2231-2234   Abstract: A simple and eco-friendly method has b...
Title: Polyketide bio-derivatization using the promiscuous acyltransferase KirCII Author: Musiol-Kroll, E.M., Zubeil, F., Schafhauser, T., Hartner, T., Kulik, A., McArthur, J., Koryakina, I., Wohlleben, W., Grond, S., Williams, G.J., Lee, S.Y., and Weber, T. Journal: ACS Synth. Biol., 2017, 6 (3), pp 421–427   Abstract: During polyketide bios...
Title: Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme Author: Kim, Y-J., Choi, S.Y., Kim, J.E., Jin, K.S., Lee, S.Y., Kim, K-J. Journal: Biotechnol. J., 12(1):  1-12 (2017. 1) Abstract: Polyhydroxyalkanoates (PHAs) are natural...
Title: Crystal structure of Ralstonia eutrophapolyhydroxyalkanoate synthase C-terminal domain and reaction mechanismsAuthor: Kim, J.E., Kim, Y-J., Choi, S.Y., Lee, S.Y.,Kim, K-J.Journal: Biotechnol. J., 12(1):  1-12(2017. 1)Abstract:Polyhydroxyalkanoates(PHAs) are natural polyesters synthesized by numerous microorganisms as energyand reducing power storage materials, and h...