Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[Frontispiece] An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte

Title: An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte
Author: Ming Liang Jin, Sangsik Park, Jong-Seon Kim, Sung Hyun Kwon, Shuye Zhang, Min Seok Yoo, Sungwoo Jang, Hyeong-Jun Koh, Soo-Yeon Cho, So Young Kim, Chi Won Ahn, Kilwon Cho, Seung Geol Lee, Do Hwan Kim,* and Hee-Tae Jung*
Journal: Advanced Materials, 2018, Vol.30, 1706851
Abstract: Ultrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices. The ICS displays highly sensitive and stable sensing of representative VOCs (including toluene, hexane, propanal, ethanol, and acetone) that are found in the exhaled breath of lung cancer patients. In particular, the sensor is found to be fully operational even after being subjected to long‐term storage or harsh environmental conditions (relative humidity of 85% or temperature of 100 °C) or severe mechanical deformation (bending to a radius of curvature of 1 mm, or stretching strain of 100%), which can be an effective method to realize a human‐adaptive and skin‐attachable biosensor platform for daily use and early diagnosis.


0

추천하기

0

반대하기

첨부파일 다운로드

등록자관리자

등록일2018-05-18

조회수2,274

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
스팸방지코드 :
사진제목
Microbial production of short-chain alkanes Yong Jun Choi & Sang Yup Lee Nature Volume:502,Pages:571–574Date published:(24 October 2013)DOI:doi:10.1038/nature12536 Increasing concerns about limited fossil fuels and global environmental problems have focused attention on the need to develop sustainable biofuels from renewable resources. Although microbial production of diesel...
Title: Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core–shell structure Author: Dong Ju Han, Jae Hwan Jung, Jong Seob Choi, Yong Tae Kim and Tae Seok Seo Journal : Lab on a Chip 2013,13, 4006 Lab Chip, 2013,13, 4006-4010 DOI: 10.1039/C3LC50838B ABSTRACT Spherical 3D graphite microballs (3D GMs) and their nanohybri...
Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli Seung Min Yoo,1, 2 Dokyun Na1, 2, 3 & Sang Yup Lee1 Journal name:Nature Protocols Volume:8, Pages: 1694–1707 Year published:(2013)DOI: doi:10.1038/nprot.2013.105 Published online 08 August 2013 Abstract Gene knockout experiments are often essential in functional genomics and metabolic...
Abstract: Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Further d...
ABSTRACT: Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, t...