Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements


[Front cover picture] Cancer Treatment: Enhanced Photodynamic Cancer Treatment by Mitochondria‐Targeting and Brominated Near‐Infrared Fluorophores

Title: Cancer Treatment: Enhanced Photodynamic Cancer Treatment by MitochondriaTargeting and Brominated NearInfrared Fluorophores

Author: Ilkoo Noh, DaeYong Lee, Heegon Kim, Chan-Uk Jeong, Yunsoo Lee, Jung-Oh Ahn, Hoon Hyun, Ji-Ho Park, and Yeu-Chun Kim

Journal: Advanced science (IF:9.034)


Abstract: A noninvasive and selective therapy, photodynamic therapy (PDT) is widely researched in clinical fields; however, the lower efficiency of PDT can induce unexpected side effects. Mitochondria are extensively researched as target sites to maximize PDT effects because they play crucial roles in metabolismand can be used as cancer markers due to their high transmembrane potential. Here, a mitochondria targeting photodynamic therapeutic agent (MitDt) is developed. This photosensitizer is synthesized from heptamethine cyanine dyes, which are conjugated or modified as follows. The heptamethine mesoposition is conjugated with a triphenylphosphonium derivative for mitochondrial targeting, the N-alkyl side chain is modified for regulation of charge balance and solubility, and the indolenine groups are brominated to enhance reactive oxygen species generation (ROS) after laser irradiation. The synthesized MitDt increases the cancer uptake efficiency due to the lipo-cationic properties of the triphenylphosphonium, and the PDT effects of MitDt are amplified after laser irradiation because mitochondria are susceptible to ROS, the response to which triggers an apoptotic anticancer effect. Consequently, these hypotheses are demonstrated by in vitro and in vivo studies, and the results indicate strong potential for use of MitDts as efficient single-moleculebased PDT agents for cancer treatment.






첨부파일 다운로드




  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
스팸방지코드 :
Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli Seung Min Yoo,1, 2 Dokyun Na1, 2, 3 & Sang Yup Lee1 Journal name:Nature Protocols Volume:8, Pages: 1694–1707 Year published:(2013)DOI: doi:10.1038/nprot.2013.105 Published online 08 August 2013 Abstract Gene knockout experiments are often essential in functional genomics and metabolic...
Abstract: Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Further d...
ABSTRACT: Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, t...
Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths Sung-Gyu Park*a and   Seung-Man Yang*a   Nanoscale, 2013,5, 4110-4113 DOI: 10.1039/C3NR00644A Received 05 Feb 2013, Accepted 15 Mar 2013First published online 19 Mar 2013 Abstract High-quality woodpile structures with photonic band gaps in the visible wavelength ...
   Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs Dokyun Na,1, 2 Seung Min Yoo,1, 2 Hannah Chung,1 Hyegwon Park,1 Jin Hwan Park1, 2 & Sang Yup Lee Nature BiotechnologyYear published:(2013)DOI:doi:10.1038/nbt.2461Received17 January 2012 Accepted22 November 2012 Published online20 January 2013 Small regulatory RNAs (...