Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements


[cover picture] Design of Cyanovinylene-Containing Polymer Acceptors with Large Dipole Moment Change for Efficient Charge Generation in High-Performance All-Polymer Solar Cells

Title: Design of Cyanovinylene-Containing Polymer Acceptors with Large Dipole Moment Change forEfficient Charge Generation in High-Performance All-Polymer Solar Cells 


Author: Han-Hee Cho, SeonhaKim, Taesu Kim, Vijaya Gopalan Sree, Sung-Ho Jin, Felix Sunjoo Kim, and BumjoonJ. Kim* 


Journal: Advanced EnergyMaterials 2017, 8 (3), 1701436 


Abstract: Designing polymersthat facilitate exciton dissociation and charge transport is critical for theproduction of highly efficient all-polymer solar cells (all-PSCs). Here, thedevelopment of a new class of high-performance naphthalenediimide (NDI)-basedpolymers with large dipole moment change (Δµge) anddelocalized lowest unoccupied molecular orbital (LUMO) as electron acceptorsfor all-PSCs is reported. A series of NDI-based copolymers incorporatingelectron-withdrawing cyanovinylene groups into the backbone (PNDITCVT-R) isdesigned and synthesized with 2-hexyldecyl (R = HD) and 2-octyldodecyl (R = OD)side chains. Density functional theory calculations reveal an enhancement in Δµge and delocalization of the LUMO upon the incorporation of cyanovinylenegroups. All-PSCs fabricated from these new NDI-based polymer acceptors exhibitoutstanding power conversion efficiencies (7.4%) and high fill factors (65%),which is attributed to efficient exciton dissociation, well-balanced chargetransport, and suppressed monomolecular recombination. Morphological studies bygrazing X-ray scattering and resonant soft X-ray scattering measurements showthe blend films containing polymer donor and PNDITCVT-R acceptors to exhibitfavorable face-on orientation and well-mixed morphology with small domainspacing (3040 nm). 






첨부파일 다운로드




  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
스팸방지코드 :
Liquid-Impermeable Inverse Opals with Invariant Photonic Bandgap (pages 1282–1287) Hyelim Kang, Joon-Seok Lee, Won Seok Chang and Shin-Hyun Kim Article first published online: 10 DEC 2014 | DOI: 10.1002/adma.201404706 [ABSTRACT] Omniphobic inverse opals are created by structurally and chemically modifying the surface of inverse opals through reactive ion etching. During the etching, ...
Robust Microfluidic Encapsulation of Cholesteric Liquid Crystals toward Photonic Ink Capsules,` Advanced Materials, 27, 627−633 (2015) Sang Seok Lee, Bomi Kim, Su Kyung Kim, Jong Chan Won, Yun Ho Kim, and Shin-Hyun Kim 관련기사:  [ABSTACT] Robust photonic microcapsules are created by microfluidic encapsulation of chol...
Cofactor-Free Light-Driven Whole-Cell Cytochrome P450 Catalysis Angew. Chem. Int. Ed. 54(3):969-973 (Jan. 12 2015)   Park JH, Lee SH, Cha GS, Choi DS, Nam DH, Lee JH, Lee JK, Yun CH, Jeong KJ*, Park, CB*  [ABSTRACT] Cytochromes P450 can catalyze various regioselective and stereospecific oxidation reactions of non-functionalized hydrocarbons. Here, we have designed a novel ...
Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes Tilmann Weber, Pep Charusanti, Ewa Maria Musiol-Kroll, Xinglin Jiang, Yaojun Tong, Hyun Uk Kim, Sang Yup Lee  [ABSTRACT] Actinomycetes contain diverse antibiotic gene clusters that have not been fully explored yet. Existing and recently developed tools now allow us to perform metabolic ...
New Platform for cytochrome P450 reaction combining in situ immobilization on biopolymer.   Lee JH, Nam DH, Lee SH, Park JH, Park SJ, Lee SH, Park CB, Jeong KJ   Bioconjugate Chemistry (2014) 25(12):2101-2104.   [ABSTRACT]We describe an efficienct chemical conversion platform with in situ immobilization of P450-BM3 on poly(3-hydroxybutyrate) granules. Through fusion ...