Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements


[cover paper] Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme

Title: Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme

Author: Kim, Y-J., Choi, S.Y., Kim, J.E., Jin, K.S., Lee, S.Y., Kim, K-J.

Journal: Biotechnol. J., 12(1):  1-12 (2017. 1)


Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by numerous microorganisms as energy and reducing power storage materials, and have attracted much attention as substitutes for petroleum-based plastics. In an accompanying paper, the authors reported the crystal structure of the C-terminal domain of Ralstonia eutropha PHA synthase (PhaC1). Here, the authors report the 3D reconstructed model of full-length of R. eutropha PhaC1 (RePhaC1F) by small angle X-ray scattering (SAXS) analysis. The catalytic C-terminal domain of RePhaC1 (RePhaC1CD) dimer is located at the center of RePhaC1F, and the N-terminal domain of RePhaC1 (RePhaC1ND) is located opposite the dimerization subdomain of RePhaC1CD, indicating that RePhaC1ND is not directly involved in the enzyme catalysis. The localization studies using RePhaC1F, RePhaC1ND and RePhaC1CD revealed that RePhaC1ND plays important roles in PHA polymerization by localizing the enzyme to the PHA granules and stabilizing the growing PHA polymer near the active site of RePhaC1CD. The serial truncation study on RePhaC1ND suggested that the predicted five α-helices (N-α3 to N-α7) are required for proper folding and granule binding function of RePhaC1ND. In addition, the authors also report the SAXS 3D reconstructed model of the RePhaC1F/RePhaMΔC complex (RePhaMΔC, PAKKA motif-truncated version of RePhaM). RePhaM forms a complex with RePhaC1 by interacting with RePhaC1ND and activates RePhaC1 by providing a more extensive surface area for interaction with the growing PHA polymer.






첨부파일 다운로드




  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
스팸방지코드 :
Microbial production of short-chain alkanes Yong Jun Choi & Sang Yup Lee Nature Volume:502,Pages:571–574Date published:(24 October 2013)DOI:doi:10.1038/nature12536 Increasing concerns about limited fossil fuels and global environmental problems have focused attention on the need to develop sustainable biofuels from renewable resources. Although microbial production of diesel...
Title: Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core–shell structure Author: Dong Ju Han, Jae Hwan Jung, Jong Seob Choi, Yong Tae Kim and Tae Seok Seo Journal : Lab on a Chip 2013,13, 4006 Lab Chip, 2013,13, 4006-4010 DOI: 10.1039/C3LC50838B ABSTRACT Spherical 3D graphite microballs (3D GMs) and their nanohybri...
Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli Seung Min Yoo,1, 2 Dokyun Na1, 2, 3 & Sang Yup Lee1 Journal name:Nature Protocols Volume:8, Pages: 1694–1707 Year published:(2013)DOI: doi:10.1038/nprot.2013.105 Published online 08 August 2013 Abstract Gene knockout experiments are often essential in functional genomics and metabolic...
Abstract: Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Further d...
ABSTRACT: Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, t...