Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[cover paper] Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme

Title: Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme


Author: Kim, Y-J., Choi, S.Y., Kim, J.E., Jin, K.S., Lee, S.Y., Kim, K-J.


Journal: Biotechnol. J., 12(1):  1-12 (2017. 1)


Abstract:

Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by numerous microorganisms as energy and reducing power storage materials, and have attracted much attention as substitutes for petroleum-based plastics. In an accompanying paper, the authors reported the crystal structure of the C-terminal domain of Ralstonia eutropha PHA synthase (PhaC1). Here, the authors report the 3D reconstructed model of full-length of R. eutropha PhaC1 (RePhaC1F) by small angle X-ray scattering (SAXS) analysis. The catalytic C-terminal domain of RePhaC1 (RePhaC1CD) dimer is located at the center of RePhaC1F, and the N-terminal domain of RePhaC1 (RePhaC1ND) is located opposite the dimerization subdomain of RePhaC1CD, indicating that RePhaC1ND is not directly involved in the enzyme catalysis. The localization studies using RePhaC1F, RePhaC1ND and RePhaC1CD revealed that RePhaC1ND plays important roles in PHA polymerization by localizing the enzyme to the PHA granules and stabilizing the growing PHA polymer near the active site of RePhaC1CD. The serial truncation study on RePhaC1ND suggested that the predicted five α-helices (N-α3 to N-α7) are required for proper folding and granule binding function of RePhaC1ND. In addition, the authors also report the SAXS 3D reconstructed model of the RePhaC1F/RePhaMΔC complex (RePhaMΔC, PAKKA motif-truncated version of RePhaM). RePhaM forms a complex with RePhaC1 by interacting with RePhaC1ND and activates RePhaC1 by providing a more extensive surface area for interaction with the growing PHA polymer.


 

0

추천하기

0

반대하기

첨부파일 다운로드

등록자관리자

등록일2017-04-11

조회수2,319

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
스팸방지코드 :
사진제목
Facile Photo-Crosslinking of Azide-Containing Hole-Transporting Polymers for Highly Efficient, Solution-Processed, Multilayer Organic Light Emitting Devices   Article first published online: 13 OCT 2014 , DOI: 10.1002/adfm.201401958   Junwoo Park, Changyeon Lee, Jihye Jung Hyunbum Kang, Ki-Hyun Kim, Biwu Ma and Bumjoon J. Kim [ABSTRACT]A novel framework of azide co...
Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon  Hyun Dong Ha, Dong Ju Han, Jong Seob Choi, Minsu Park, and Tae Seok Seo [Abstract] Homogeneous blue luminescent MoS2 quantum dots are fabricated by using a lithium intercalation method from MoS2 nanoparticles, and the unique blue photoluminescence property is utilized in the Alexa F...
Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline Ki Soo Park, Seung Soo Oh, H. Tom Soh and Hyun Gyu Park [ABSTRACT] A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocke...
 [cover] Hyelim Kang, Shin-Hyun Kim*, Seung-Man Yang, and Ji-Ho Park*, `Bio-inspired nanotadpoles with component-specific functionality,` Journal of Materials Chemistry B, 2, 6462-6466 (2014).   [ABSTRACT] We report a new class of bio-inspired nanotadpoles (NTPs) with component-specific functionalities. The plasmonic NTPs with a gold-coated head and a reactive ion e...
[inside front cover] Hye Soo Lee, Ju Hyeon Kim, Joon-Seok Lee, Jae Young Sim, Jung Yoon Seo, You-Kwan Oh, Seung-Man Yang, and Shin-Hyun Kim*, `Magnetoresponsive Discoidal Photonic Crystals towards Active Color Pigments,` Advanced Materials, 26, 5801-5807 (2014). [ABSTACT] Morpho butterflys show beautiful colors that arise from periodic nanostructures. Inspired by the butterfly, colloida...