Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[cover picture] Self-Organization of Polymer Additive, Poly(2-vinylpyridine) via One-Step Solution Processing to Enhance the Efficiency and Stability of Polymer Solar Cells

Title: Self-Organization of Polymer Additive, Poly(2-vinylpyridine) via One-Step Solution Processing to Enhance the Efficiency and Stability of Polymer Solar Cells


Author: Wonho Lee, Seonju Jeong, Changyeon Lee, Gibok Han, Changsoon Cho, Jung-Yong Lee, Bumjoon J. Kim* 

 

Journal: Advanced Energy Materials, 2017, Vol.7, 1602812


Abstract: 

 Interfaces between the photoactive layers and electrodes play critical roles in controlling the performance of optoelectronic devices. Herein, a novel nonconjugated polymer additive (nPA), poly(2-vinylpyridine) (P2VP), is reported for modifying the interfaces between the bulk-heterojunction (BHJ) and cathode/metal oxide (MO) layers. The P2VP nPA enables remarkably enhanced power conversion efficiencies (PCEs) and ambient stability in different types of polymer solar cells (PSCs). Importantly, interfacial engineering can be achieved during deposition of the P2VP nPA-containing BHJ active layer via simple, one-step solution processing. The P2VP nPA has much higher surface energy than the BHJ active components and stronger interaction with the surface of MO, which affords spontaneous vertical phase separation from the BHJ layer on the MO surface by one-step solution processing. The self-assembled P2VP layer substantially reduces the work function and surface defect density of MO, thereby minimizing the charge-extraction barrier and increasing the PCEs of the PSCs significantly, i.e., PTB7-Th:PC71BM (10.53%11.14%), PTB7:PC71BM (7.37%8.67%), and PTB7-Th:P(NDI2HD-T) all-PSCs (5.52%6.14%). In addition, the lifetimes of the PSCs are greatly improved by the use of the P2VP nPA. 

 

 

0

추천하기

0

반대하기

첨부파일 다운로드

등록자관리자

등록일2017-09-13

조회수68

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
스팸방지코드 :
사진제목
Title:  [Inside Front Cover] An Ultrasensitive, Visco-Poroelastic Artificial Mechanotransducer Skin Inspired by Piezo2 Protein in Mammalian Merkel Cells  Author: Ming Liang Jin†, Sangsik Park†, Younghoon Lee, Ji Hye Lee, Junho Chung, Joo Sung Kim, Jong-Seon Kim, So Young Kim, Eunsong Jee, Dae Woo Kim, Jae Woo Chung,Seung Geol Lee, Dukhyun Choi, Hee-Tae Jung* ...
Title:  A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA-inorganic hybrid nanoflowers   Author: Ki Soo Park, Bhagwan S Batule, Minsoo Chung, Kyoung Suk Kang, Tae Jung Park, Moon Il Kim and Hyun Gyu Park*   Journal: Journal of Material Chemistry B, 2017, 5, 2231-2234   Abstract: A simple and eco-friendly method has b...
Title: Polyketide bio-derivatization using the promiscuous acyltransferase KirCII Author: Musiol-Kroll, E.M., Zubeil, F., Schafhauser, T., Hartner, T., Kulik, A., McArthur, J., Koryakina, I., Wohlleben, W., Grond, S., Williams, G.J., Lee, S.Y., and Weber, T. Journal: ACS Synth. Biol., 2017, 6 (3), pp 421–427   Abstract: During polyketide bios...
Title: Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme Author: Kim, Y-J., Choi, S.Y., Kim, J.E., Jin, K.S., Lee, S.Y., Kim, K-J. Journal: Biotechnol. J., 12(1):  1-12 (2017. 1) Abstract: Polyhydroxyalkanoates (PHAs) are natural...
Title: Crystal structure of Ralstonia eutrophapolyhydroxyalkanoate synthase C-terminal domain and reaction mechanismsAuthor: Kim, J.E., Kim, Y-J., Choi, S.Y., Lee, S.Y.,Kim, K-J.Journal: Biotechnol. J., 12(1):  1-12(2017. 1)Abstract:Polyhydroxyalkanoates(PHAs) are natural polyesters synthesized by numerous microorganisms as energyand reducing power storage materials, and h...