Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements

제목

[cover paper] Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme

Title: Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme


Author: Kim, Y-J., Choi, S.Y., Kim, J.E., Jin, K.S., Lee, S.Y., Kim, K-J.


Journal: Biotechnol. J., 12(1):  1-12 (2017. 1)


Abstract:

Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by numerous microorganisms as energy and reducing power storage materials, and have attracted much attention as substitutes for petroleum-based plastics. In an accompanying paper, the authors reported the crystal structure of the C-terminal domain of Ralstonia eutropha PHA synthase (PhaC1). Here, the authors report the 3D reconstructed model of full-length of R. eutropha PhaC1 (RePhaC1F) by small angle X-ray scattering (SAXS) analysis. The catalytic C-terminal domain of RePhaC1 (RePhaC1CD) dimer is located at the center of RePhaC1F, and the N-terminal domain of RePhaC1 (RePhaC1ND) is located opposite the dimerization subdomain of RePhaC1CD, indicating that RePhaC1ND is not directly involved in the enzyme catalysis. The localization studies using RePhaC1F, RePhaC1ND and RePhaC1CD revealed that RePhaC1ND plays important roles in PHA polymerization by localizing the enzyme to the PHA granules and stabilizing the growing PHA polymer near the active site of RePhaC1CD. The serial truncation study on RePhaC1ND suggested that the predicted five α-helices (N-α3 to N-α7) are required for proper folding and granule binding function of RePhaC1ND. In addition, the authors also report the SAXS 3D reconstructed model of the RePhaC1F/RePhaMΔC complex (RePhaMΔC, PAKKA motif-truncated version of RePhaM). RePhaM forms a complex with RePhaC1 by interacting with RePhaC1ND and activates RePhaC1 by providing a more extensive surface area for interaction with the growing PHA polymer.


 

0

추천하기

0

반대하기

첨부파일 다운로드

등록자관리자

등록일2017-04-11

조회수1,734

  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
 
스팸방지코드 :
사진제목
Title: Self-Organization of Polymer Additive, Poly(2-vinylpyridine) via One-Step Solution Processing to Enhance the Efficiency and Stability of Polymer Solar Cells Author: Wonho Lee, Seonju Jeong, Changyeon Lee, Gibok Han, Changsoon Cho, Jung-Yong Lee, Bumjoon J. Kim*    Journal: Advanced Energy Materials, 2017, Vol.7, 1602812 Abstract: &...
Title: A hydrocarbon/Nafion bilayer membrane with a mechanical nano-fastener for vanadium redox flow batteries   Author: Soohyun Kim, Seongmin Yuk, Hyungyu Kim, Chanyong Choi, Riyul Kim, Jang Young Lee, Young Taik Hong and Hee-Tak Kim* Journal: Journal of Materials Chemistry A, 2017, 5, 17279-17286 Inside front cover Abstra...
Title: Stimuli-Responsive, Shape-Transforming Nanostructured Particles Author: Junhyuk Lee, Kang Hee Ku, Mingoo Kim, Jae Man Shin, Junghun Han, Chan Ho Park, Gi-Ra Yi, Se Gyu Jang, Bumjoon J. Kim*   Journal: Advanced Materials, 2017, Vol.29, 1700608 Abstract Dynamic, temperature-driven transformation of the shap...
Title:  [Frontispiece] Structural Color Palettes of Core-Shell Photonic InkCapsules containing Cholesteric Liquid CrystalsAuthor: Sang Seok Lee, HyeonJin Seo, Yun Ho Kim,* and Shin-Hyun Kim*Journal: AdvancedMaterials, 2017, Vol.29, 1606894AbstractPhotonicmicrocapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with oppositehandedness in th...
Title:  [Front cover] Selective Coloration of Melanin Nanospheres throughResonant Mie ScatteringAuthor: Soojeong Cho, Tae SoupShim, Ju Hyeon Kim, Dong-Hyun Kim, and Shin-Hyun Kim*Journal: Advanced Materials,2017, Vol.29, 1700256AbstractBlack melanin inks are preparedto selectively exhibit colors under strong light, inspired by human hair. Highabsorbance of melanin suppresses multiple sca...