Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements


[Back cover] High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization

Title : High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization


Authors : Sungmin Hong, Kyung-Deok Min, Byeong-Uk Nam and O Ok Park*


Journal : Green Chemistry, 2016, Vol.18, p.5142-5150



The goal of this study was to develop ecofriendly bioplastics, which could be applicable in beverage packaging, by synthesizing furan-based co-polyesters and incorporating them into bottles. The furanbased co-polyesters were synthesized by a two-step melt polycondensation reaction using ethylene glycol (EG), 1,4-cyclohexanedimethanol (CHDM), and dimethyl furan dicarboxylate (DM-FDCA). The incorporation of CHDM into the main chain of polymers has been found to increase the chain mobility due to its ring-conformational transition, and it also affects the co-polyesters. The co-polyesters show not only high elongations at break, but also improved Izod impact strengths compared to that of pure poly(ethylene furanoate) (PEF). Despite these characteristics, however, the molecular weights of the copolyesters were not sufficient for manufacturing purposes. Thus, some samples were further reacted in the solid state by solid state polymerization (SSP) to generate higher-molecular-weight polymers. The crystallization kinetics of the co-polyesters prepared were analyzed to determine the reaction parameters, and the sample whose intrinsic viscosity was greater than 1.0 dL g-1 was successfully processed into bottles. The bottles prepared had higher O2-barrier properties and lower acetaldehyde contents than those of commercially available PET bottles. The results obtained so far show that furan-based co-polyesters can be used for food-packaging applications. 









첨부파일 다운로드




  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
스팸방지코드 :
Title: Self-Organization of Polymer Additive, Poly(2-vinylpyridine) via One-Step Solution Processing to Enhance the Efficiency and Stability of Polymer Solar Cells Author: Wonho Lee, Seonju Jeong, Changyeon Lee, Gibok Han, Changsoon Cho, Jung-Yong Lee, Bumjoon J. Kim*    Journal: Advanced Energy Materials, 2017, Vol.7, 1602812 Abstract: &...
Title: A hydrocarbon/Nafion bilayer membrane with a mechanical nano-fastener for vanadium redox flow batteries   Author: Soohyun Kim, Seongmin Yuk, Hyungyu Kim, Chanyong Choi, Riyul Kim, Jang Young Lee, Young Taik Hong and Hee-Tak Kim* Journal: Journal of Materials Chemistry A, 2017, 5, 17279-17286 Inside front cover Abstra...
Title: Stimuli-Responsive, Shape-Transforming Nanostructured Particles Author: Junhyuk Lee, Kang Hee Ku, Mingoo Kim, Jae Man Shin, Junghun Han, Chan Ho Park, Gi-Ra Yi, Se Gyu Jang, Bumjoon J. Kim*   Journal: Advanced Materials, 2017, Vol.29, 1700608 Abstract Dynamic, temperature-driven transformation of the shap...
Title:  [Frontispiece] Structural Color Palettes of Core-Shell Photonic InkCapsules containing Cholesteric Liquid CrystalsAuthor: Sang Seok Lee, HyeonJin Seo, Yun Ho Kim,* and Shin-Hyun Kim*Journal: AdvancedMaterials, 2017, Vol.29, 1606894AbstractPhotonicmicrocapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with oppositehandedness in th...
Title:  [Front cover] Selective Coloration of Melanin Nanospheres throughResonant Mie ScatteringAuthor: Soojeong Cho, Tae SoupShim, Ju Hyeon Kim, Dong-Hyun Kim, and Shin-Hyun Kim*Journal: Advanced Materials,2017, Vol.29, 1700256AbstractBlack melanin inks are preparedto selectively exhibit colors under strong light, inspired by human hair. Highabsorbance of melanin suppresses multiple sca...