Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements


[Inside Front Cover] Controlling Molecular Orientation of Naphthalenediimide-Based Polymer Acceptors for High Performance All-Polymer Solar Cells

Controlling Molecular Orientation of Naphthalenediimide-Based Polymer Acceptors for HighPerformance All-Polymer Solar Cells


Author: Jihye Jung, Wonho Lee, Changyeon Lee, Hyungju Ahn, Bumjoon J.Kim


Journal: Advanced Energy Materials DOI: 10.1002/aen,.201600504


Molecular orientation, with respect to donor/acceptor interface andelectrodes, plays a critical role in determining the performance of all-polymersolar cells (all-PSCs), but is often difficult to rationally control. Here, aneffective approach for tuning the molecular crystallinity and orientation ofnaphthalenediimide-bithiophene-based n-type polymers (P(NDI2HD-T2)) bycontrolling their number average molecular weights (Mn) is reported. A series of P(NDI2HD-T2)polymers with different Mn of13.6 (PL),22.9 (PM),and 49.9 kg mol1 (PH) are prepared by changingthe amount of end-capping agent (2-bromothiophene) during polymerization.Increasing the Mn values ofP(NDI2HD-T2) polymers leads to a remarkable shift of dominant lamellarcrystallite textures from edge-on (PL) to face-on (PH) as well as more than a twofold increase in thecrystallinity. For example, the portion of face-on oriented crystallites isdramatically increased from 21.5% and 46.1%, to 78.6% for PLPM, and PH polymers. Thesedifferent packing structures in terms of the molecular orientation greatlyaffect the charge dissociation efficiency at the donor/acceptor interface andthus the short-circuit current density of the all-PSCs. All-PSCs with PTB7-Thas electron donor and PH as electron acceptor show the highest efficiencyof 6.14%, outperforming those with PM (5.08%) and PL (4.29%).





첨부파일 다운로드




  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
스팸방지코드 :
Title: Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio Author: Seon Joon Kim, Hyeong-Jun Koh, Chang E. Ren, Ohmin Kwon, Kathleen Maleski, Soo-Yeon Cho, Babak Anasori, Choong-Ki Kim, Yang-Kyu Choi, Jihan Kim, Yury Gogotsi*, Hee-Tae Jung* Journal: ACS Nano 2018, 12 (2), 986-993. Abstract: Achieving high...
Title: Design of Cyanovinylene-Containing Polymer Acceptors with Large Dipole Moment Change forEfficient Charge Generation in High-Performance All-Polymer Solar Cells  Author: Han-Hee Cho, SeonhaKim, Taesu Kim, Vijaya Gopalan Sree, Sung-Ho Jin, Felix Sunjoo Kim, and BumjoonJ. Kim*  Journal: Advanced EnergyMaterials 2017, 8 (3), 1701436  Abstract: D...
Title: A label-free and enzyme-free signal amplification strategy for a sensitive RNase H activity assay   Author: Chang Yeol Lee,‡ Hyowon Jang,‡ Ki Soo Park* and Hyun Gyu Park* (‡: equal contribution)   Journal:  Nanoscale 2017, 9, 16149-16153 Abstract: We herein describe a label-free and enzyme-free signal amplification strategy...
Title: Rationally Designed Donor–Acceptor Random Copolymers with Optimized Complementary Light Absorption for Highly Efficient All-Polymer Solar Cells   Author: Sang Woo Kim, Joonhyeong Choi, Thi Thu Trang Bui, Changyeon Lee, Changsoon Cho, Kwangmin Na, Jihye Jung, Chang Eun Song, Biwu Ma, Jung-Yong Lee, Won Suk Shin,* and Bumjoon J. Kim*   Journal: Adv. Funct...
Title: Self-Organization of Polymer Additive, Poly(2-vinylpyridine) via One-Step Solution Processing to Enhance the Efficiency and Stability of Polymer Solar Cells Author: Wonho Lee, Seonju Jeong, Changyeon Lee, Gibok Han, Changsoon Cho, Jung-Yong Lee, Bumjoon J. Kim*    Journal: Advanced Energy Materials, 2017, Vol.7, 1602812 Abstract: &...