Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Recent Achievements


Tuning selectivity of electrochemical reactions by atoomically dispersed platinum catalyst

Tuning selectivity of electrochemical reactions by atoomically dispersed platinum catalyst


Chang Hyuck Choi, Minho Kim, Han Chang Kwon, Sung June Cho, Seongho Yun, Hee-Tak Kim, Karl J.J. Mayrhofer, Hyungjun Kim, Minkee Choi


Nature Communications, Vol. 7, page 10922 (March 8, 2016)



Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single-site) metal centers, but its realization remains challenging so far because carbon as the most widely used electrocatalyst support cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting extra-large sulfur content (17 wt% S) as well as a unique carbon structure (i.e., highly curved 3-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of Pt (5 wt%) in the form of atomically dispersed platinum species. In the oxygen reduction reaction (ORR), this catalyst does not follow a conventional 4-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers new opportunities for tuning selectivity of other electrochemical reactions on various metal catalysts. 


그림1. 백금 단일원자 촉매에서의 과산화수소(H2O2)  생성반응 모식도


 그림 2. HAADF-STEM 분석법을 통해 관찰한 백금 단일 원자 사진(탄소: gray, 수소: white, 황 : yellow, 백금 : purple)






첨부파일 다운로드




  • 페이스북 공유
  • 트위터 공유
  • Google+ 공유
  • 인쇄하기
스팸방지코드 :
Title: Metabolic Engineering of Escherichia coli for the Production of 3‑Hydroxypropionic Acid and Malonic Acid through β‑Alanine Route   Author: Chan Woo Song, Je Woong Kim, In Jin Cho, and Sang Yup Lee   Journal: ACS Syn. Biol., 5(11): 1256-1263 (2016. 11)   ABSTRACT: Escherichia coli was metabolically engineered t...
Title: A Low-Voltage Organic Complementary Inverter with High Operation Stability and Flexibility Using an Ultrathin iCVD Polymer Dielectric and a Hybrid Encapsulation LayerAuthor: Hyejeong Seong, Junhwan Choi, Byung Chul Jang, Mincheol Kim, Seunghyup Yoo, Sung-Yool Choi, and Sung Gap Im* Journal: Advanced Electronic Materials, 2016, Vol.2, p.1500385  Abstract: A low-volta...
Title: Synthesis of Ultrathin,Homogeneous Copolymer Dielectrics to Control the Threshold Voltage of OrganicThin-Film Transistors Author: Kwanyong Pak , Hyejeong Seong , Junhwan Choi , Wan Sik Hwang , and Sung Gap Im*Journal: Advanced Functional materials, 2016, Vol.26, p.6574–6582AbstractThis work demonstrates that thresholdvoltage (VT) of organicthin-fi lm transistors (OTFTs) can be contro...
Title : High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization Authors : Sungmin Hong, Kyung-Deok Min, Byeong-Uk Nam and O Ok Park* Journal : Green Chemistry, 2016, Vol.18, p.5142-5150 AbstractThe goal of this study was to develop ecofriendly bioplastics, which could be applicable in bevera...
Controlling Molecular Orientation of Naphthalenediimide-Based Polymer Acceptors for HighPerformance All-Polymer Solar Cells Author: Jihye Jung, Wonho Lee, Changyeon Lee, Hyungju Ahn, Bumjoon J.Kim Journal: Advanced Energy Materials DOI: 10.1002/aen,.201600504 [ABSTRACT]Molecular orientation, with respect to donor/acceptor interface andelectrodes, plays a critical role in det...