Department of Chemical and Biomolecular Engineering
Korea Advanced Institute of Science and Technology

Faculty

Dong-Yeun Koh (고동연)

Assistant Professor

Tel : +82-42-350-3913
Fax : +82-42-350-3910
E-mail : dongyeunkoh@kaist.ac.kr
Homepage : https://mmml.kaist.ac.kr

Education

2013 Ph.D. KAIST (Thesis Advisor: Prof. HuenLee)

2007 B.S. Korea University

 

Employmentand Professional Experience

2014 - 2017 Postdoctoral ResearchAssociate, Georgia Institute of Technology, School of Chemical and BiomolecularEngineering (Supervisor: Prof. Ryan P. Lively)

2013 - 2014 Postdoctoral ResearchAssociate, KAIST, Department of Chemical and Biomolecular Engineering

 

ResearchInterests

  • Molecularly-SelectiveMembranes for Large-Scale Separation Processes

    • Hydrocarbonand natural gas separations

    • Acid/sourgas removal

    • Organicsolvent separations

    • Waterpurifications

  • Energy-EfficientNatural Gas Storage and Production: Scalable Engineering of Clathrate Hydrates

    • Naturalgas storage, production, and transportation

    • CO2capture, CH4 and H2 storage

 

SelectedPublications

  1. Koh, D.-Y.; Pimentel, B. R.; Pandianbabu,V.; Chai, S. W.; Rosinski, A.; Stephenson, N.; Lively, R. P.“Sub-Ambient Air Separation via Li+ Exchanged Zeolite”, Micropor. Mesopor. Mat., 250:140-146  (2017)

  2. Eum,K.; Ma, C.; Koh,D.-Y. ; Rashidi, F.;Jones, C.; Lively, R. P.; Nair, S. "Zeolitic ImidazolateFramework Membranes on Macroporous Carbon Hollow Fibers by Fluidic ProcessingTechniques”, Adv. Mat. Interfaces,4(12):1700080 (2017) EqualContribution *Selected as a VIP paper

  3. Koh, D.-Y.; McCool, B. A.; Deckman, H.; Lively,R. P. "Reverse Osmosis Molecular Differentiation of Organic Liquidsusing Carbon Molecular Sieve Membranes”, Science,353(6301): 804-807 (2016)

  4. Koh, D.-Y.; Lively, R. P. "Nanoporous Graphene:Membranes at the Limit”, NatureNanotechnology, News & ViewsReview Article, 10: 385–386 (2015)

  5. Koh, D.-Y.; Ahn, Y.-H.; Kang, H.; Park,S.; Lee, J. Y.; Kim, S.-J.; Lee, J.; Lee, H. "One-DimensionalProductivity Assessment of Flue Gas Injection on Gas Hydrates: Variables forOn-Field Methane Hydrate Production using CO2/N2 MixtureGas ", AIChE J., 61 (3):1004-1014 (2015)

  6. Koh, D.-Y.; Kang, H.; Jeon, J.; Park, Y.;Kim, H.; Lee H. "Tuning Cage Dimension in Clathrate Hydratesfor Hydrogen Multiple Occupancy”, J.Phys. Chem. C. 118 (6): 3324-3330 (2014) *Featured as a cover paper

  7.  Koh, D.-Y.; Kang, H.; Park, J.; Shin, W.; Lee, H.,"Atomic Hydrogen Production from Semi-Clathrate Hydrate", J. Am. Chem. Soc., 134 (12): 5560–5562(2012)

  8.  Koh,D.-Y.; Kang, H.; Kim, D.-O.; Park, J.; Cha, M.; Lee H., "Recoveryof Methane from Gas Hydrate Intercalated within Natural Sediment Using CO2and a CO2/N2 Gas Mixture", ChemSusChem, 5 (8): 1443-1448 (2012)

MultidimensionalMolecular Materials Laboratory (MMML)

MMMLfocuses on the design and engineering of energy-efficientmolecular separation and advanced thermodynamic processes. Industrialseparation processes constitute 10 – 15% of the worldwideenergy demand, due to the predominant utilization of thermal separation methodssuch as distillation. MMML is developing new generations of the advancedseparation devices and thermodynamic processes that will enable chemicalengineers to debottleneck current thermally-driven chemical processes.Fundamental understanding of the meso-/nano-scaleinteraction between host platforms (e.g., 0D, 1D, 2D, and 3D ordered/disordered molecular frameworks) and guest species(e.g., petrochemicals, bio-chemicals, pharmaceuticals) will be a critical steptowards revolutionizing current energy-intensive chemical processes. Multidimensionalmaterials including 0D (discrete microporous cages and clusters), 1D(nanofibers), 2D (nanosheets), and 3D (flexible nanoporousframeworks) materials will be extensively utilized in producing scalable separationdevices based on multilayer hollow fiber systems. The overarching objectives ofMMML are to (i) seek for reasonableexplanations of host-guest molecular interaction in terms of heat (enthalpy) and order (entropy), (ii) connectmolecular-level understanding to scalable devices or processes, and (iii) revolutionize current energy-intensive chemical processes.